

ELECTRIC VEHICLE CHARGER Applicant Checklist

Permit Submittal and Plan Review Checklist for Electric Vehicle Chargers

This information is designed to assist an applicant in applying for a permit for an electrical vehicle charger installation. This handout is not all inclusive. It identifies items we find are most often missing in permit submittals. Special circumstances or unique designs may require Village Staff to request additional information or details.

To obtain a permit for an electric vehicle charger, please submit a [Building Permit Application](#) and complete the form below. For multiple identical chargers, only one permit application is necessary.

CONSTRUCTION REQUIREMENTS:

- Documentation shall include the following information:
 - Cover Sheet indicating the specific building codes and pertinent project information. Installation shall conform to the 2020 NEC article 625 part III.
 - Vehicle chargers should be installed on a minimum of a dedicated circuit following the vehicle manufacturer's requirement. There are typically three levels of car charging, all require a continuous duty rating of not less than 125% of the maximum load.
 - Include the Manufacturer's requirements and note the following:
 - Requires an individual branch circuit, with no other outlet.
 - Overcurrent protection must be sized for continuous duty.
 - The EV charging unit location shall be directly adjacent to the vehicle it is charging.
 - Power supply cord overall Cord length shall be minimum of 6' to a maximum of 25'.
- Plans shall include the following:
 - EV Charging unit brand, model, plug type and spec. sheets.
 - Size of the Electrical circuit required by the charger, amps or KW.
 - Conductor size, type and quantity per conduit run.
 - Breaker size in amps.
 - Conduit size and type.
 - Drawing(s) of raceway route(s) from panel(s) to charger(s).
 - NEMA wall plug type.
 - Written scope of work and signed contract.
 - Provide a Load Calculation Sheet.
 - For multi-family and commercial applications, Professional Engineering certification may be required.

ELECTRIC VEHICLE CHARGER SPECIFICATIONS

Charging Level

- Level 1 (120V)
- Level 2 (240V)
- Level 3 (480V)

Mounting Type

- Wall Mount
- Pole Pedestal Mount
- Other

Max. Rating (Nameplate) _____ kW

Voltage _____ V

Manufacturer: _____

SERVICE PANEL SPECIFICATIONS

System Voltage

- 120/240V, 1 Phase, 3W
- 120/208V, 3 Phase, 4W
- 120/240V, 3 Phase, 4W
- 277/480V, 3 Phase, 4W
- Other

System Rating

Existing Main Electrical Service Equipment Rating _____ Amps
Panel Rating Supplying EVCS (if using a sub-panel) _____ Amps
Circuit Rating for EVCS _____ Amps / _____ Poles
Total Power for EV Charging _____ kW

CONNECTIONS

EVCS Maximum Continuous Output _____ Amps X 1.25 = _____ Amps (required breaker size)

Minimum Gauge of EVCS Conductor # _____ AWG (required wire size)

Accessible Service Disconnect (NEC 625.23) YES N/A (required at 60 amps or per manufacturer's specs)

Conduit Size _____ Number of Conductors _____ Gauge of Ground Conductor # _____ AWG

Conduit Size _____ Number of Conductors _____ Gauge of Ground Conductor # _____ AWG

Electric Load Worksheet

Address: _____ Date: _____

Main Electric Panel Service Size: Existing _____ (Amps) / New (if applicable) _____ (Amps)

Quantity of Existing Subpanels: _____ Quantity of New Subpanels: _____ Gas Furnace (Y/N) _____

Breaker Size(s) feeding subpanel(s)? _____ Wires Size(s) feeding subpanel(s)? _____

A. Calculate Habitable¹ Square Footage

_____ (Existing S.F.) + _____ (New S.F., if any) = _____ Total Habitable¹ Square Footage

B. Identify General Loads

General Lighting and Use Receptacles:	_____	Total Habitable ¹ SF	x 3	= _____	total watts
Kitchen Small Appliance Branch Circuits:	_____	(Quantity, Min. 2)	x 1500	= _____	total watts
Bathroom Small Appliance Branch Circuits:	_____	(Quantity, Min. 1)	x 1500	= _____	total watts
Range:	_____	(Nameplate Rating)	x 1	= _____	total watts
Oven:	_____	(Nameplate Rating)	x 1	= _____	total watts
Water Heater:	_____	(Nameplate Rating)	x 1	= _____	total watts
Dishwasher:	_____	(Nameplate Rating)	x 1	= _____	total watts
Garbage Disposal:	_____	(Nameplate Rating)	x 1	= _____	total watts
Washer:	_____	(Nameplate Rating)	x 1	= _____	total watts
Dryer:	_____	(Nameplate Rating)	x 1	= _____	total watts
Total Subpanel Load ² :	_____	(Combined Watts ²)	x 1	= _____	total watts
Motor Loads:	_____	(Nameplate Rating)	x 1	= _____	total watts
Other Loads:	_____	(Nameplate Rating)	x 1	= _____	total watts

Add total watts together (from above) = Total B

C. Identify Largest of the Following Six Heating and Air Conditioning (HAC) Loads

Electric Thermal Storage:	_____	(Nameplate Rating)	x 1	= _____	total watts
Air Conditioning and Cooling:	_____	(Nameplate Rating)	x 1	= _____	total watts
Heat Pump (without any supplemental electric heating):	_____	(Nameplate Rating)	x 1	= _____	total watts

3 or Less (Separately Controlled) Electric Space Heating Units:	_____	(Nameplate Rating)	x 0.65	= _____	total watts
4 or more (Separately Controlled) Electric Space Heating Units:	_____	(Nameplate Rating)	x 0.40	= _____	total watts
Central Electric Space Heating System ³ :	_____	(Combined Nameplate Rating ³)	= _____	total watts	

Enter single largest Heating and Air Conditioning Load (from above) = _____ Total C

D. Calculate Total Service Load

Total D (Power from EV charging) _____ kW

_____ - 10,000 watts x 0.40 + 10,000 watts + _____ + _____ = _____ Total Watts
Total B (from above) Total C (from above) Total D (from above)

Signature _____

Print Name _____

State License Number (if applicable) _____

¹ Habitable square footage includes the floor area for each floor, calculated from the outside dimensions of the dwelling unit. It does not include open porches, garages, or unused or unfinished spaces not adaptable for future use.

² Add all subpanel loads here that are not already included elsewhere on this form.

³ For Central Electric Space Heating Systems, add 100% of the heat pump compressor's nameplate rating plus 65% of the supplemental electric heating's nameplate rating. If the heat pump compressor is prevented from operating at the same time as the supplementary heat, it does not need to be added to the supplementary heat for the total central space heating load.